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Abstract. In this paper we propose a new parallel algorithm for solving global optimization (GO)
multidimensional problems. The method unifies two powerful approaches for accelerating the search:
parallel computations and local tuning on the behavior of the objective function. We establish con-
vergence conditions for the algorithm and theoretically show that the usage of local information
during the global search permits to accelerate solving the problem significantly. Results of numerical
experiments executed with 100 test functions are also reported.

Key words: Global optimization, Parallel computations, Local tuning

1. Introduction

Let us consider the problem of finding the global minimum and global minimizers
of a function¢ (y), y € D, where

D={x:a; <x; <b,1<i <N}

is a hyperinterval ilR" . This problem is actively studied by many authors (see e.g.
[6-9, 16]). One of the promising approaches to attack this problem is in using the
Peano type space-filling curves.

It is known (see [2, 16, 17]) that this multidimensional problem can be reduced
to a one-dimensional one by using the curves. In this case we obtain

min{¢(y) : y € D} = min{g(y(x)) : x € [0, 1]}, 1)

moreover, if the multidimensional function(y) satisfies the Lipschitz condition
with the constanL over D theng (y(x)) over the interval0, 1] satisfies the Elder
condition

o) —p(yN IS H | X' =x" YN, X', x" €]0,1], ()
whereH is the Hlder constant and

H=4LdVN, d=maxb;—a;:1<i<N}.
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The constantd corresponds to the space-filling curyér) which computational
scheme is presented in [16] (see also [18]). A special procedure for fast calculating
the imagey(x) € D on the curve for every given € [0, 1] has been proposed in

these papers. The procedure has a high speed because, instead of constructing an
approximation of the whole curve, it directly computes the coordinategxfin

D for every givenx. In addition, its parallel version has been introduced in [18].

For solving the problem (1), (2) theformation algorithm(lA) has been pro-
posed in[16, 17] for the case when the Lipschitz constant (and, therefor@ktherH
one) is unknown. A special procedure for estimatiigpn the base of information
obtained during the search has been elaborated.

The power of parallel computations is widely used in global optimization to
accelerate the search (different approaches are presented in [1, 5, 8,-10, 14, 15,
18-20]). It has been shown that very often simple parallelizing ideas (parallel grid
method or subdividing the search regiorpirsubregions wherg processors work
in parallel) can lead to appearence of redundant function evaluations in comparison
with an efficient sequential method. That is why one of the reasonable ways for
usage of parallel computers consists in parallelizing fast sequential methods.

Wide numerical experiments and a deep theoretical study have shown (see
[4, 16]) that IA has good speed characteristics in comparison with other methods
which don't use derivatives. In [18] parallel information algorithm(PIA) ex-
tending IA to the case of parallel computations has been introduced. Convergence
conditions and estimates of speed up obtained in comparison with the original
sequential IA have been established. A special study has been executed to obtain
conditions which guarantee absence of redundant (in comparison with the sequen-
tial case) evaluations af(y(x)). This idea has demonstrated to be fruitful and it
was applied to parallelize some other sequential GO methods (see [3, 14, 15]). By
generalizing this approach a class of parallel characteristical GO algorithms has
been introduced and theoretically investigated in [5].

An alternative approach for acceleration of the global search consists in the
following. It has been shown for different one-dimensional GO algorithms (see
[11-13]) that using estimates of the Lipschitz constarglows down the search
for that subregions where the local Lipschitz constants are significantly less than
L (hereinafter we shall call. the global Lipschitz constant). The sequentialt
formation GO algorithm with local tuning(IALT) has been introduced in [12] for
solving the problem (1), (2). In that paper a special procedure has been proposed
to estimate adaptively local constants in different areas of the search region to
accelerate the search. Theoretical results and numerical experiments have shown
that this approach permits to accelerate the search significantly in comparison with
the original 1A using esimates of the global Lipschitz constant.

In this paper we propose to unify both approaches and constrperailel
information algorithm withlocal tuning (PLT). In order to accelerate the search
during every iteration the new method makes the following:
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— it adaptively estimatekcal Hblder constantsn different subintervals of
[0, 1] to tune itself on the local behaviour of the reduced objective function
¢(y(x)), x €[0,1];

— it simultaneously evaluates the objective functip€y(x)) at p different
points in p intervals (having the highest probability to contain the global
optimum) onp parallel computers;

— local information aboup (y(x)) is used over thevholesearch regioduring
the global search in contrast with traditional approaches (see e.g. [6, 7])
usually starting a local search in a neighbourhood of a global minimizer
after stopping the global procedure.

It will be shown further that adaptive estimates of the locéldér constants
introduced here permit to accelerate the search significantly in comparison with
the parallel methods (see [5, 18]) using the global Lipschitdker) constants or
their estimates.

The rest of the paper is structured as follows. Section 2 describes the compu-
tational scheme of PLT and presents convergence results of the new type for the
introduced parallel method. Section 3 contains results of a numerical comparison
between IA, PIA, IALT and PLT executed with 100 two-dimensional functions
usually used in literature for numerical comparison between the information GO
methods (see [4, 5, 16, 18]). Some conclusions are presented in the last Section.

2. The algorithm and its convergence conditions

To describe the algorithm we need some designations and definitions. We introduce
a simplifying designation

f@x) =¢((x)), xel01],

for the objective functior (y(x)). We calltrial the operation of evaluating (x)

at a pointx. The charactet we use as the counter of parallel iterations of PLT. In
the course of every parallel iteratidrwe evaluatef (x) at p(I) > 1 points using
p(l) parallel processors. We use the Peano curve approximation with themepth
presented in [16,18] and a preset accuracpncorded withn by the inequality

€= 2""/(4J/N).

Let us now present the computational scheme of the new method.

Step 0. Executeg(/) > 1 initial trials at the pointsc! = 0,x2 = 1 and some
internal pointse®, x4, ... , x9? belonging to(0, 1). Set/ = 1.

Step 1. Pointsx!, x?, ... , x9? of the previous trials reorder by increasing of their
coordinates using subscripts, i.e.

O=x1<x<...<x4-1<x;=1

whereg = g(1).
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Step 2. Calculate the valueg; estimating local lder constants for the intervals
[xj-1,x;],2 < j < g, following the rules :

where¢ > 0 is a small number, the valug spying on the local informa-
tion is determened by the formulae

| f(x) — f(xizp) | i

by = max | xi —xi—q [V €ljh 4)
{2, 3} if j=2

Ii=1{j—-1jj+1 if3<j<qg-1
{g—1.q) ifj=q

The last part of formulae (3) controls the global information accumulated
during all the previous iterations and is represented by the value

Vi = M(X, _ xj_l)l/N/(Xmax)l/N’ (5)
where

p=max| f(x;) — fxj_1) | /(x; —x;—)YN 1 2<j < g,

XM = max{x; —x;_1:2<i <gq).

Step 3. Fortheinterval$x;_1, x;], 2 < j < ¢, compute their characteristied( ;)
as follows

YN 4 (zj — Z.i—l)2
rug(x; —x;_)¥N
—(zj+zj-1), 2<j<gq, (6)

R(j) =ru;(x; —xj_1)

wherez; = f(x;),1 < j < g, andr > 1 is the reliability parameter of
the method.

Step 4. Calculate the new trial points’*/ e (0,1), 1 < j < p, and their images
y(x9t/) e D,1< j < p, onthe Peano curve-approximation

X9 = 050x, 1+ x,) — ) 2, — z-1 | /)N SiONz, — 24,-1),
(7)
where
n=argmaXR():1<i <gq},
ti=argmaxR(i):1<i<q,i #1,,1<s<j—-1},1<j<p,
p=pl+1)<ql)-1
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Step 5. Execute trials of thél + 1)th iteration at the points(x¢*/),1 < j < p,
wherex?t/, 1 < j < p, are from (7).
Step 6. If the stopping rule

min{| x,, —x,,—1 7Y 1<) < p) <e
is not satisfied, then go to Step 1. Otherwise take the value
z;:min{zi:lgigq}

as an estimate of the global minimum and corresponding to this value
pointsy; € D as estimates of global minimizers and Stop.

The algorithm described above belongs to the class of parallel characteristical
methods introduced in [5]. In comparison with the other algorithms from the class
[5] the main peculiarity of the new method consists in the following. Instead of
usage the global élder constantH or its estimates, PLT executes an adaptive
local tuning on the behaviour of the reduced one-dimensional fungtian. The
local tuning is based on the estimatesof the local Holder constant$f; for every
subintervallx;_1, x;], 2 < j < ¢(l), during every iteratior > 1.

The valuepn; from (3) represents the result of a balance between the global
and local information accumulated during the search. If the intdrvah, x;] is
small then, the local information (see (4)) representedk pys very important.

The global information (see (5)) representedjhyis less important because the
estimateu of the global Holder constant (see (2)) could be obtained at an interval
being very far from[x;_1, x;]. Vice versa, when the intervak;_1, x;] is wide,
then we cannot trust the local information from (3) anglays the most important
part. The parametérreflects our idea thaf (x) is such that over every subinterval
[x;_1, x;] its HOIder constant{; > &.

Let us now consider convergence properties of the new methodxtebe the
sequence of the trial points generated by PLT during minimizing the fungtion
The first theorem on a level with other results asserts that only local minimizers of
f(x) can be limit points ofx?}.

THEOREM 1. Letx € [0, 1] be a limit point of the sequend¢e?} and
p(H <0 <o0, I >1 (8)

Then the following results take place :
i. if x € (0,1 then, there exist two subsequencegdf such that the first
one converges to from the left and the second one - from the right;
ii. the pointx is a local minimizer off (x) if the function f(x) has a finite
number of local extrema;
iii. if apart x there exists another limit poirt, then 1 (x) = f(x);
iv. forallg > litfollowsz? = f(x?) > f(x).



162 Ya.D. SERGEYEV

Proof. Since PLT belongs to the class of parallel characteristical methods these
results can be easily deduced from the general convergence theory presented in
[5]. O

The second theorem describes sufficient convergence conditions of the sequence
{x?} to a global minimizerc*. This result can not be obtained within the gen-
eral framework from [5] and we prove it. In order to proceed let us introduce
{g} = {1, 2,3, ...} as the sequence enumerating iterations executed by PLT.

THEOREM 2. If (8) is true and there exists an infinite subsequefice {h} C
{q}, such that for the intervélx;_1, x;1, j = j(/), [ € {h}, containing the poin™
during thelth PLT iteration the following inequality takes place

rij > zlfl/NKj 4 (41*1/NK]2 _ sz)l/z’ (9)
where
K =max{(zj-1— NG =207, (@ = FO) 0 =297,
(10)
MI :| Zj—l - Z.j | (x, — Xj_l)_l/N, (11)

then,x* is a limit point of{x?}.
Proof. In order to start the proof we notice that the following inequality takes
place for the estimatgs; from (3):

Suppose now that there exists a limit paint£ x* of the trial sequencéx?}.
From (6), (12) and the first assertion of Theorem 1 we conclude for the interval
[x;_1, x;], i = i(]), containingx” at thelth iteration of PLT, that

Jim R(i(1)) = 4 £ (). (13)
Consider now the intervdk;_1, x;1, j = j (),
x* e xj_1, xj] (14)

and suppose that* is not a limit point of{x?}. This means that there exists an
iteration numbern such that for all > m

x4D ¢ [x;_1, x51, J=i0,1<k<pl+1),

i.e. new trial points will not fall in the interval (14). Estimate now the characteristic
R(j()),l > m, of this interval. It follows from (10) and (14) that

zjo1— (%) < Kt —x;_) YN,
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7j— f(x*) < Kj(xj —xHYY,
By summarizing these two inequalities and by using the designation
o =" —xj_1)/(x; —xj_1),
we obtain

Zji1+ 27 K2F () + Kj((xF —xjo)YN + (x — YY) =
=2f(*) + K@V + Q=) (x; — x; )YV <
<2f(x™) + Kj(x; —xj,l)l/Nmax{al/N +1-a)YV:0<a<1 =
=2(f(x*) + 27 YVK(x; — x;)MY).

From this estimate, (9), and (11) we have

RGD) =ruj(xj —x;- )Y 4+ (zjo1 — 2)%rm ) "2y — x;) YN
—2(zj-1+2z;) (15)
;= x4+ MErpp) ™t = 227YNKG) — AF ()

VoV

—4f(x")

for all iteration numbers$ € {h}.
Sincex™ is a global minimizer and the sequen@a is infinite, then from (13)
and (15) it follows that an iteration numbgrwill exist such that

R(j(") = RG(IT)). (16)

But, in according with the decision rules of PLT, this means that during*the
iteration one ofp(I*) new trials will be executed at the interval (14). Thus, our
assumption that* is not a limit point of{x?} is not true and theorem has been
proved. O

COROLLARY 1. Given the conditions of Theorem 2 all the limit points of the
sequencégx?} are the global minimizers of (x).
Proof. The corollary follows from the third assertion of Theorem 1. O

Let X* be the set of the global minimizers of the functigiix). Corollary 1
ensures that the set of limit points of the sequefade belongs taX*. Conditions
ensuring coincidence of these sets are established by Corollary 2.

COROLLARY 2. If condition (14) is fulfilled for all the points* € X*, then the
set of limit points ofx?} coincides withx*.

Proof. Again, the corollary is a straightforward consequence of Theorem 2 and
the third assertion of Theorem 1. O
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Theorem 2 and its corollaries are very important both from theoretical and prac-
tical viewpoints. It is known (see [2, 16, 17]) that every point D can have up
to 2¥ images on the curve. The global minimizercan have up to’2 images on
the curve too. To obtain artapproximation ofc* it is enough to find onloneits
image on the curve.

We have proved that to have convergence to a global minimiz&LT needs
the fulfilment of condition (9) (which is considerably weaker than the Lipschitz
condition) for one of the images of the pokiton the curve. Thus, (in contrast with
the other methods from the class [5]) the new parallel method does not need the
exact value of the precise Lipschitz consténfneither its upper estimate) for the
wholeregionD. It is enough that condition (9) is fulfilled in a neighbourhoodcf
for oneits image on the curve. In contrast with this, methods using in their work the
exact Lipschitz (Hlder) constant (or its upper estimate) will have convergence to
all 2" imageson the curve. Of course, this fact leads to a significant slowing down
the search and explains why PLT works faster. Results of numerecal experiments to
be presented in the next Section confirm that the new approach permits to accelerate
the search significantly.

3. Numerical experiments

In this section we compare performance of the new method PLT with the ori-
ginal information algorithm (lA), parallel information algorithm (PIA), and se-
quential information algorithm with local tuning (IALT). An ALLIANT FX/80
parallel mini-supercomputer having 4 processors has been used on the series of
100 two-dimensional multiextremal functions from [4] usually applied for testing
information GO methods (see [4, 5, 12, 16, 18)):

7 7 7
fx) = [Z Z(Aijaij(x) + Bijbij(x))]z + [Z (Cijaij(x) — Dijbij(x))]z’

7
i=1 j=1 i=1 j=1
17)

where0< x1 <1,0<x, < 1land
a;j(x) = sin(imxy) Sin(jmxy), b;j(x) = cogimxy) COSjmx2),

andA;;, B;;, Ci;, D;; are random coefficients from the interval [-1,1].

For all the methods in all the experiments we have used the 12-order approxim-
ation of the Peano curve, initial poini8.2, 0.4, 0.6, 0.9}, the reliability parameter
r = 2.9 and the search accuraey= 0.001. We have chosén= 10-° in PLT.

In Tables 12 we present average results for 100 functions from the class (17).
The column "%" shows a quantity of experiments in which global minima have
been found. In Table 1 we compare the sequential method IALT and PLT. It is
seen from the table that the introduced type of the parallelizm permits to achieve
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Table 1. Average results of the numerical experiments executed by PLT w.r.t. the sequential method
IALT

Method Processors % Trials Time Speed up Speed up
(trials) (time)

IALT 1 98 351.37 11.15 - -

PLT 2 96 339.00 4.22 1.97 3.33

PLT 3 98 349.75 2.73 3.02 7.15

PLT 4 98 348.24 1.99 3.94 10.33

Table 2. Average results of numerical experiments with the information algorithms using global
estimates of the Blder constant

Method Processors % Trials Time Speed up Speed up
(trials) (time)

1A 1 100 1575.12 70.04 - -

PIA 2 100 1596.08 21.06 1.97 3.33

PIA 3 100 1562.61 9.80 3.02 7.15

PIA 4 100 1599.92 6.78 3.94 10.33

high levels of speed up in comparison with the sequential method IALT. Note, that
obtaining speed up higher than the number of processors used in the parallel case
is possible due to parallel adaptive estimating the locdter constants.

In order to underline the effect obtained after introducing the local tuning, in
Table 2 we report the values of speed up obtained by using the parallel method
PIA in comparison with the original sequential IA (see [18]). Both methods use an
adaptive estimate of thglobal H6lder constant in their work.

In Table 3 we compare PLT working with the locablder constants with PIA
using the global ilder constant. The data from Table2lhave been used. The
obtained values of speed up both in time and in trials are shown. It is seen from
Table 3 that in comparison with PIA the new method PLT functions faster more
than 45 times in trials and more thanZtimes in time.

4. A brief conclusion

In this paper a new parallel algorithm for solving global optimization multidimen-
sional problems has been proposed. The method unifies two powerful approaches
for accelerating the search : parallel computations and local tuning on the be-
havior of the objective function. Peano-type space-filling curves have been used
to reduce the multidimensional problem to the one-dimensional one. For the ob-
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Table 3. Speed up obtained by using PLT in comparison with PIA on the data from Talffes 1

Processors Speed up in trials Speed up in time
2 4.71 4.99
3 4.47 3.59
4 4.59 341

tained problem the new method adaptively estimates lo&diet constants over
different subintervals of the one-dimensional search region to tune itself on the
local behaviour of the reduced objective function. The local information is used
by the method over thevhole search regioruring the global search in contrast
with traditional approaches usually starting a local searchnrighbourhoodof

a global minimizerafter stopping the global procedure. It has been theoretically
and numerically shown that the new technique permits to accelerate the search
considerably.
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